PYRROLES AND RELATED COMPOUNDS—XXXV¹

A STEPWISE, GENERAL SYNTHESIS OF UNSYMMETRICALLY SUBSTITUTED PORPHYRINS² J. A. P. BAPTISTA DE ALMEIDA, G. W. KENNER,* J. RIMMER and K. M. SMITH The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX

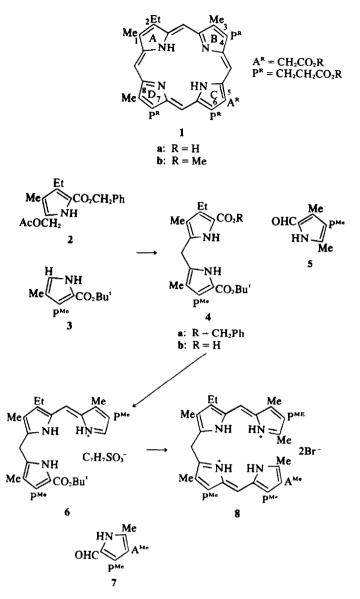
Dedicated to Prof. Dr. Hans Herloff Inhoffen on the occasion of his 70th birthday.

(Received in the UK 15 January 1976; Accepted for publication 19 February 1976)

Abstract—Using a new, general approach involving the stepwise progression through pyrrole, dipyrrole, tripyrrole, to tetrapyrrole, followed by cyclisation of the resulting *a*,*c*-biladiene by the copper salt method, syntheses of isocoproporphyrin tetramethyl ester (1b). coproporphyrin-III tetramethyl ester (24), protoporphyrin-IX dimethyl ester (26), 2,4,6,7-tetrakis(2-methoxycarbonylethyl)-5-methoxycarbonylmethyl-1,3,8-trimethylporphin (29) (the ester of the pentacarboxylic porphyrin recently associated with haem metabolism), rhodoporphyrin-XV dimethyl ester (27) and 2,4,7-triethyl-6-methoxycarbonyl-1,3,5,8-tetramethylporphin (28), are described.

The route employs condensation of unsymmetrically substituted pyrromethanes with 2-formyl-5-methylpyrroles to give crystalline and fully characterised tripyrrene salts in high yield. These are then condensed with a second mole of a different 2-formyl-5-methylpyrrole to give very high yields of *a*,*c*-biladiene dihydrobromides; cyclisation with copper(II) chloride in dimethylformamide gives copper(II) porphyrins which are demetallated in trifluoroacetic acid containing sulphuric acid to give high overall yields of the corresponding metal free porphyrins.

Haem and most of the tetrapyrrolic macrocycles related to its biosynthesis possess an element of symmetry. Positions 5 and 8 and positions 6 and 7 (Fischer numeration) in rings C and D have identical pairs of substituents. This circumstance was employed by Hans Fischer in his classical synthesis' of protoporphyrin-IX, and the convenience has been accepted in the majority of subsequent syntheses in this area.4 In recent years. however, exploration of the biosynthetic pathway to haem⁵ has revealed the participation, as intermediates, of porphyrinogens corresponding to unsymmetrical porphyrins. Thus, for example, the "sub-uroporphyrins" bearing seven, six, and five carboxylic acids no longer retain the C-D symmetry.⁶ Moreover, specifically ¹³C, ¹⁴C and ²H labelled porphyrins, required for studies of biosynthesis⁵ and the binding of haem to globins,⁷ are generally unsymmetrical.


In the chlorophyll field symmetry is not encountered, and the classical methods of synthesis are inadequate. In this connection, we have already devised and employed new methods involving stable open-chain tetrapyrrolic precursors of the macrocycle,⁸ notably the *b*-oxobilane method.⁹ Versatile as this is, it has the drawback of requiring high experimental skill. We now describe a more efficient method and exemplify it in several instances related to haem, chlorophyll-*a*, and the biosynthesis of the *Chlorobium* chlorophylls.

The method is based on the cupric-catalysed cyclisation of a,c-biladienes,¹⁰ which has recently been employed and improved by Clezy *et al.*¹¹ Our contribution is to show how such unsymmetrically substituted tetrapyrrolic intermediates can be readily constructed by adapting methods already developed by us for our previous syntheses. Owing to the unavailability of unsymmetrically substituted 1',8'-dimethyl-a,c-biladienes, previous workers have tended to rely upon the corresponding *b*-bilenes for preparation of complex porphyrins by the copper salt method; even then, if safeguards are not built into rings A and D of the b-bilene, side-reactions¹² become troublesome.

Thus, condensation of an acetoxymethylpyrrole with a 2-unsubstituted pyrrole yields¹³ a benzyl t-butyl pyrromethane-5,5'-dicarboxylate. Hydrogenolysis frees the 5-position for condensation with a 2-formylpyrrole under acidic conditions which nonetheless permit retention of the t-butyl ester. The resulting key intermediate, a tripyrrene, which is fully characterised, is then treated, after acidolysis of the t-butyl protecting group, with another 2-formylpyrrole, yielding the 1',8'-dimethyl-*a*,*c*-biladiene. Subsequent to the appearance of our preliminary publication,² Gossauer has communicated¹⁴ the synthesis of a porphyrin using a similar sequence of reactions.

Our first specific example is a synthesis of isocoproporphyrin, which is found in the faeces of patients suffering from symptomatic cutaneous hepatic porphyria, and in rats with porphyria induced by hexachlorobenzene poisoning.^{15a} By consideration of results from an ingenious lanthanide shift NMR study, the original structural proposal was amended¹⁵⁶ in favour of (1a); meanwhile, a total synthesis of the incorrectly assigned structure was completed¹⁶ and the product was shown to be different from natural isocoproporphyrin. Though we were developing the present porphyrin synthesis for other applications,17 we considered that a good test of the generality of the new approach would be a synthesis of isocoproporphyrin tetramethyl ester (1b); a successful synthesis would also serve to confirm the new structural proposal^{15b} and the reasoning which led to its suggestion.

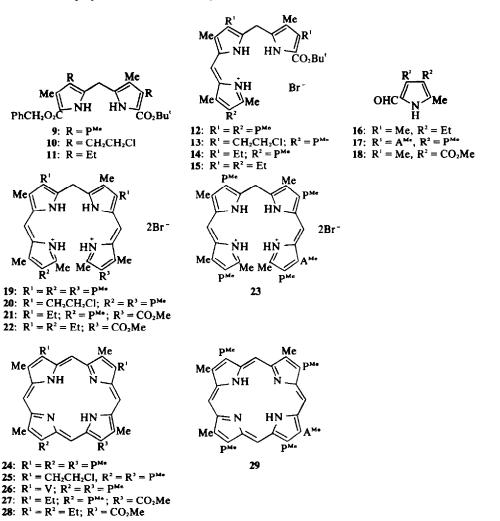
Condensation of the acetoxymethylpyrrole (2) with the 2-unsubstituted pyrrole (3) in acetic acid containing a catalytic amount of toluene p-sulphonic acid¹³ gave a good yield of the pyrromethane (4a) which was hydrogenated over palladised charcoal to afford the carboxylic acid (4b). This was condensed in the presence of toluene p-sulphonic acid with the 2-formyl-5-methylpyrrole (5) and

gave an 80% yield of the tripyrrene,¹⁸ isolated as its toluene p-sulphonate (6). The remaining t-butyl ester protecting group was cleaved in trifluoroacetic acid-hydrobromic acid in the presence of the 2-formyl-5-methylpyrrole (7) and gave an 89% yield of the a,c-biladiene di-hydrobromide (8). Cyclisation^{10,11} with copper(II) chloride in dimethylformamide gave the copper(II) complex of the required porphyrin which was demetallated in trifluoroacetic acid containing 5% sulphuric acid to give a 30% yield of isocoproporphyrin tetramethyl ester (1b).

The NMR spectrum of the synthetic material (1b) was virtually identical with that already published^{15a} for the natural material; the TLC behaviour was identical with that of a sample of natural material kindly supplied by Dr. Elder, and the synthetic substance (recrystallised from methylene chloride-n-hexane) possessed a melting point (182-183°, corr.) only slightly higher than that of the natural compound crystallised from the same system. The mixed m.p. showed no depression and together with superimposable high performance liquid chromato-graphy traces confirmed fully the proposed^{15b} structure for isocoproporphyrin (1a). However, satisfactory m.ps

could only be obtained in evacuated capillaries; on a Kofler hot-stage only partial melting (ca. 175-177°) was observed with both the natural and synthetic esters. Shortly after the publication of our preliminary report² of the synthesis of (1b), we were informed by Prof. Clezy of his own independent synthesis of the same molecule. His material, however, recrystallised from methylene chloride-methanol, melted fairly cleanly on a Kofler hot-stage some 10° higher than the natural ester and our own synthetic sample. Though both synthetic samples were identical by TLC, the differential m.p. behaviour (due to different crystalline modifications) has been confirmed in both laboratories following an exchange of samples. After recrystallisation of the Liverpool sample from methylene chloride-methanol, its m.p. is raised to 193-195° with slight softening around 183°. There is some evidence (Experimental) that the higher melting form is partially hydrated, but neither in Prof. Clezy's laboratory nor our own has it been possible to generate the low-melting form by recrystallisation of high-melting material from methylene chloride-n-hexane.

The Experimental contains full details of the syntheses of five other porphyrins using this general approach. Only


brief comments on the individual examples are therefore given here.

Coproporphyrin-III tetramethyl ester (24) and protoporphyrin-IX dimethyl ester (26). The tripyrrene hydrobromides (12 or 13) were obtained by condensation of the appropriate pyrromethane [obtained by hydrogenolysis of (9) or (10)] with the 2-formyl-5methylpyrrole (5). These were in turn condensed with a second mole of the same formylpyrrole (5) to give the a,c-biladiene dihydrobromides (19 or 20). Cyclisation as described above followed by demetallation gave coproporphyrin-III tetramethyl ester (24; identified by comparison with authentic material) or the 2,4-bis(2chloroethyl)porphyrin (25), a well-characterised intermediate in all of our earlier syntheses19 of protoporphyrin-IX. Treatment of the zinc(II) chelate of 25 with t-butoxide in t-butyl alcohol gave a good yield of protoporphyrin-IX dimethyl ester after treatment with 5% sulphuric acid in methanol.

At first sight, the strategy of condensing two molecules of the same 2-formyl-5-methylpyrrole (5) in separate steps might appear to be unnecessary, and under normal circumstances the intermediacy of the tripyrrenes (12 or 13) could be avoided by one-step condensation of two molecules of formylpyrrole with a 5,5' doubly deprotected pyrromethane. However, the coproporphyrin-III was required for biosynthetic studies²⁰ in which a carbon label is to be sited in the propionic side-chain in ring C. Furthermore, the protoporphyrin-IX was required²¹ to bear a ${}^{2}H_{3}C$ group at position 5 (in ring C) for contact shift NMR studies of haems and haemoproteins (*cf.* Ref. 7). Both of these additional features render the required porphyrin unsymmetrical in the C-D portion and necessitate a general approach. The stepwise nature of the synthesis through tripyrrenes also facilitates the economical addition of the sub-unit bearing the novel (labelled) atoms at the tripyrrole \rightarrow tetrapyrrole stage.

2,4,6,7 - Tetrakis(2 - methoxycarbonylethyl) - 5 methoxycarbonylmethyl - 1,3,8 - trimethylporphin (29) (pentamethyl ester of "pentacarboxylic porphyrin" in the "sub-uroporphyrin" series). We recently described preliminary results of an investigation²² concerning the biosynthesis of the Chlorobium chlorophylls from Chloropseudomonas ethylicum. It transpired that the porphyrinogen derivative of the pentacarboxylic acid of porphyrin (29) was required in order to substantiate the pathway which we have proposed for the biosynthesis of the majority of the (660) chlorophylls; for this reason, we embarked upon the synthesis of 29 via the tripyrrene method. Simultaneously, Professor Jackson reported⁶ that the pentacarboxylic porphyrinogen in normal haem metabolism is the same porphyrinogen derived from the pentacarboxylic acid of 29; moreover, he described^o the synthesis of 29 and its successful identification with naturally derived pentacarboxylic ester from rats.

Treatment of the tripyrrene hydrobromide (12) with the

2-formyl-5-methylpyrrole (17) in trifluoroacetic and hydrobromic acids gave the a,c-biladiene salt (23), which was cyclised with copper(II) chloride in dimethylformamide; demetallation of the resultant copper(II) porphyrin gave a good yield of the penta carboxylic ester (29) which was successfully identified with the material described by Jackson.⁶

Rhodoporphyrin-XV dimethyl ester (27) and 2,4,7 triethyl - 6 - methoxy - carbonyl - 1,3,5,8 - tetramethylporphin (28). We considered it necessary to test the route by synthesis of rhodo-type porphyrins because the terminal rings in the intermediate a,c-biladiene (eventually rings C and D in the porphyrin) would be electronically dissimilar. While it has been demonstrated^{10,11} that a,c-biladienes with either electron releasing or electron withdrawing substituents in the terminal rings can be cyclised by the copper salt method, the situation in which there is an imbalance of electron density in the terminal rings had not been investigated.

Hydrogenation of pyrromethane (11) followed by condensation with the 2-formyl-5-methylpyrrole (5 or 16) gave the tripyrrene hydrobromides (14 or 15) respectively. These were further treated, as described earlier, with pyrrole (18) and gave good yields of the respective a,c-biladienes (21 or 22). Cyclisation with copper(II) chloride in dimethylformamide followed by demetallation gave rhodoporphyrin-XV dimethyl ester (27) (satisfactorily identified with a sample prepared²³ from chlorophyll-a) and 2,4,7-triethyl-6-methoxycarbonyl-1,3,5,8-tetramethylporphin (28) in yields comparable with those of the other porphyrins synthesised herein.

EXPERIMENTAL

M.ps were measured on a microscopic hot-stage apparatus. Unless otherwise stated, chromatographic purifications were carried out on Fluka neutral alumina (Brockmann Grade III). Visible absorption spectra (solns in CHCl₃) were measured on a Unicam SP 800 spectrophotometer, and 'H NMR spectra were determined (usually in CDCl₃ with TMS as internal standard) with a Varian HA-100 instrument. Mass spectra (direct insertion probe, operating conditions 70 eV, 50 μ A, source temperatures *ca.* 200[°]) were measured using an A.E.I. MS 902 or MS 12 spectrometer.

Pyrroles

Benzyl 3-ethyl-4,5-dimethylpyrrole-2-carboxylate. 3-Methylhexan-2,4-dione²⁴ (256 g) in glacial AcOH (1 l) was treated dropwise with the oxime prepared²⁵ from dibenzyl malonate (650 g) in HOAc (200 ml) with concomitant addition of aliquots of an intimate mixture of Zn powder (320 g) and anhyd. NaOAc (320 g) over 1.5 hr at such a rate that the mixture was maintained at 60-70°. The mixture was then heated under reflux for 1 hr before being poured onto iced H₂O (15 l). After extraction with CHCl₃(21), the organic phase was washed with H₂O, dried (Na₂SO₄), and evaporated to give a brown oil which crystallised when triturated with light petroleum, yield 125 g (35%), m.p. 88-90° (Lit.²⁶ 89-90°). τ , 0.83 (NH), 2.68, 4.72 (C₆H₃·CH₂), 7.26(q), 8.91(t) (CH₂CH₃), and 7.90, 8.11 (4,5-Me).

Benzyl 5-acetoxymethyl-3-ethyl-4-methylpyrrole-2-carboxylate (2). The foregoing pyrrole (2 g) in HOAc (40 ml) and Ac₂O (1 ml) was treated portionwise over 2.5 hr with Pb(OAc), (3.65 g) before being stirred overnight at room temp. H₂O (200 ml) was added slowly and the white ppt was filtered off, washed with H₂O, and dried. Recrystallisation from ether-hexane gave the acetoxymethylpyrrole (2.25 g; 92%), m.p. 111–112°. (Found: C, 68.34; H, 6.61; N, 4.58. C₁₈H₂₁NO₄ requires: C, 68.55; H, 6.71; N, 4.44%), τ , 0.95 (NH), 2.62, 4.71 (C₆H₅·CH₂), 5.00 (CH₂O), 7.26(q), 8.89(t) (CH₂CH₃), 7.95, 7.97 (4-Me and COMe).

Benzyl 4 - (2 - benzyloxycarbonylethyl) - 3 - benzyloxycarbonylmethyl - 5 - methylpyrrole - 2 - carboxylate. Ethyl 4(2 - ethoxycarbonylethyl) - 3 - ethoxycarbonylmethyl - 5 - methylpyrrole - 2 - carboxylate²⁷ (2 g) in benzyl alcohol (60 ml) containing Na (60 mg) was heated at 100° *in vacuo* (15 mm Hg) during 5 hr. After standing overnight at room temp. solid CO₂ was added and the benzyl alcohol removed *in vacuo* (1 mm Hg). The resultant brown oil was chromatographed (elution with toluene-methylene chloride) and evaporation of the appropriate eluates (TLC monitoring) gave a pale yellow solid. Recrystallisation from methylene chloride-hexane gave the *pyrrole* as white needles (2.3 g; 74%), m.p. 100–101°. (Found: C, 72.95; H, 6.22; N, 2.81. C₃₂H₃₃,NO₆ requires: C, 73.12; H, 5.95; N, 2.67%), τ , 0.11 (NH); 2.70(5 H), 2.74(10 H)(3 Ph·CH₂); 4.82, 4.96, 4.98 (3 Ph·CH₂); 6.16 (CH₂); 7.18–7.64 (m) (CH₂CH₂); and 7.84 (5-Me).

Benzyl 4 - (2 - methoxycarbonylethyl) - 3 - methoxycarbonylmethyl - 5 - methylpyrrole - 2 - carboxylate. The foregoing pyrrole<math>(1.5 g) suspended in MeOH (20 ml) containing conc. HNO₃ (2 drops) was stirred at 60° overnight. Methylene chloride (30 ml) and H₂O (20 ml) were added and the organic phase was washed with H₂O (20 ml). NaHCO₃ aq (20 ml), then H₂O (20 ml) and dried (Na₂SO₄). Evaporation of the solvent gave a white solid which was recrystallised from CH₂Cl₂-hexane-ether to give the pyrrole (930 mg; 85%) as white needles, m.p. 111–113° (Lit.²⁸ 113–116°). τ , 1.0 (NH); 2.67, 4.77 (Ph.CH₂); 6.23 (CH₂); 6.40, 6.46 (2 OMe); 7.2-7.74 (m)(CH₂CH₂); and 7.82 (5-Me).

2 - Formyl - 4 - (2 - methoxycarbonylethyl) - 3 - methoxycarbonylmethyl - 5 - methylpyrrole (17). The foregoing pyrrole (900 mg) in THF (25 ml) and Et₃N (2 drops) was hydrogenated at room temp. and atmospheric pressure over Pd-C (10%, 90 mg) until uptake of H₂ was complete (ca. 1 hr). The catalyst was filtered off on Celite and the filtrate was evaporated to dryness to give a pink solid which was recrystallised from THF-hexane to give the pyrrole-2-carboxylic acid (650 mg; 95%). This was dissolved in TFA (10 ml) and kept under N₂ for 30 min before evaporation of the solvent. CH₂Cl₂ and H₂O were added and the organic phase was washed with NaHCO3 aq, H2O, and then dried (Na₂SO₄) before concentration to a volume of ca 10 ml. This soln was added dropwise to dry CH2Cl2 (50 ml) containing the complex formed from allowing POCl₃ (2.5 g) and DMF (1.2 g) to stand in dry ether (70 ml) during 30 min. Na₂CO₃ aq (150 ml of 1 N) was added slowly and the heterogeneous mixture refluxed with vigorous stirring during 1 hr. The organic phase was separated, washed with H₂O, brine, and then dried (Na₂SO₄). Evaporation gave a residue which was chromatographed (elution with CH₂Cl₂). A slow running yellow fraction was collected and evaporation of the eluates gave a yellow solid which was recrystallised from CH₂Cl₂-hexane to give the formylpyrrole (200 mg; 33%) as pale pink needles, m.p. 78-78.5°. (Found: C, 58.12; H, 6.40; N, 5.29. $C_{13}H_{12}NO_5$ requires: C, 58.42; H, 6.41; N, 5.24%), τ , -0.10 (NH); 0.53 (CHO); 6.32 (CH2); 6.37, 6.42 (2 OMe); 7.2-7.68 (CH2CH2); 7.77 (5-Me).

2 - Formyl - 3 - (2 - methoxycarbonylethyl) - 4 - methoxycarbonylmethyl - 5 - methylpyrrole (7), the isomer of the compound above, was similarly prepared from benzyl 3 - (2 - methoxycarbonylethyl) - 4 - methoxycarbonylmethyl - 5 - methylpyrrole - 2 - carboxylate²⁹ (5g) by hydrogenation, decarboxylation, and then formylation. The formylpyrrole (2.1 g; 58%) was obtained as pale yellow crystals from MeOH, m.p. 111-112°. (Found: C, 58.19; H, 6.21; N, 5.23. C_{1.3}H₁₇NO₅ requires: C, 58.42; H, 6.41; N, 5.24%), τ , -0.1 (NH); 0.46 (CHO); 6.35, 6.38 (2 OMe); 6.60 (CH₂); 6.97(t), 7.42 (t) (CH₂CH₂); and 7.72 (5-Me).

Methyl 5-formyl-2,4-dimethylpyrrole-3-carboxylate (18), (with Dr. M. J. Sutton). POCl₃ (25 ml) in dry CH_2Cl_2 (140 ml) was added to DMF (25 ml). The soln was warmed to 35° during 30 min and then cooled to 0° in an ice bath. Methyl 2,4-dimethylpyrrole-3-carboxylate (8.7 g) in dry CH_2Cl_2 (160 ml) was added dropwise over 5 min with stirring, and the soln was then stirred for a further 5 min at 0° before being refluxed for 30 min. The mixture was cooled to room temp. and NaHCO₃ (250 g) in H₂O (800 ml) was added cautiously. After being stirred vigorously overnight, the soln was poured into H₂O (500 ml) and extracted with CH_2Cl_2 (3 × 250 ml). The organic extracts were washed with H₂O (3 × 250 ml), dried (Na₂SO₄), evaporated, and the residual cream solid was crystallised from CH_2Cl_2 -n-hexane to give the

formylpyrrole (9.3 g; 93%) as white needles, m.p. $173-173.5^{\circ}$. (Found: C, 59.7; H, 6.1; N, 7.8. C₉H₁₁NO₃ requires: C, 59.7; H, 6.1; N, 7.7%), τ , 0.38 (CHO), 6.22 (OMe), 7.44, 7.48 (2,4-Me).

Compounds 5 and 16 were prepared in a similar fashion from the corresponding 2-unsubstituted pyrroles.

Pyrromethanes

Benzyl 5' - t - butoxycarbonyl - 4 - ethyl - 4' - (2 - methoxycarbonylethyl) - 3,3' - dimethylpyrromethane - 5 - carboxylate (4a). Compound 3^{10} (1.73 g) in AcOH (90 ml) was treated with compound 2 (1.7 g) and then toluene p-sulphonic acid hydrate (75 mg) before being stirred under N₂ at 40° during 4 h. The mixture was poured into H₂O, extracted with CH₂Cl₂, washed with NaHCO₃ aq., H₂O, and then dried (Na₂SO₄). Evaporation gave an oil which was chromatographed, the product being eluted with EtOAc-toluene (1:1). The appropriate eluates were evaporated and the resultant oil was dried to a brittle foam under high vacuum. Yield 2.0 g (71%), τ , 1.15, 1.32 (2×NH br); 2.72, 4.79 (C₆H₃·CH₂); 6.24 (CH₂); 6.39 (OMe); 7.05(t), 7.54(t) (CH₂CH₂CO₂Me); 7.30(q), 8.94(t)(CH₂CH₃); 8.08 (2×Me); 8.51 (Bu⁴).

5' - t - Butoxycarbonyl - 4 - ethyl - 4' - (2 - methoxycarbonylethyl) - 3,3' - dimethylpyrromethane - 5 - carboxylic acid (4b). The foregoing pyrromethane (2.0 g) in THF (70 ml) containing triethylamine (0.2 ml) and 10% Pd-C (270 mg) was hydrogenated at room temp. and atm. pressure until uptake of H₂ had ceased. After filtration through Celite, the filtrate was evaporated and the product recrystallised from THF-hexane to give 1.6 g (95%) of white crystals, m.p. (decomp.), (Found: C, 63.77; H, 7.41; N, 6.37. C₂₃H₁₂N₂O₆ requires: C, 63.87; H, 7.46; N, 6.48%), τ , -1.60, -0.85 (2 × NH br); 6.18 (CH₂); 7.03 (t), 7.55 (t), 6.37 (CH₂CH₂CO₂Me); 7.24 (q), 8.85 (t) (CH₂CH₃); 7.90, 7.98 (2 × Me); 8.85 (Bu').

5' - t - Butoxycarbonyl - 3,4' - di(2 - methoxycarbonylethyl) -3',4 - dimethylpyrromethane - 5 - carboxylic acid. Catalytic hydrogenation of compound 9^{30} (1g) similarly gave the pyrromethane acid (820 mg; 97%) as pale pink prisms from THF-heptane, m.p. 163.5-165.5 (dec.), (Found: C, 61.49; H, 7.12; N, 5.83. C_{2x}H₁₄N₂O₈ requires: C, 61.21; H, 6.99; N, 5.71%), τ , -1.22, -0.77 (2×NH br); 6.13 (CH₂); 6.33, 6.35 (2×OMe); 6.92-7.80 (2×CH₂CH₂CO); 7.70, 7.90 (2×Me); 8.45 (Bu').

Tripyrrenes

t = Butyl = 1,4,6 = tri(2 = methoxycarbonylethyl) = 1',2,3,5 =tetramethyltripyrrene - a - 6' - carboxylate hydrobromide (12). The foregoing pyrromethane acid (400 mg) and compound 5 (170 mg) in CH_2Cl_2 (100 ml) were stirred with a soln of toluene *p*-sulphonic acid hydrate (388 mg; 2.5 equiv) in MeOH (5 ml) during 30 min. (The reaction was followed spectrophotometrically: a sample of the neat mixture was placed in a 10 mm cell and the side of the 492 nm absorption, which was well off scale, was observed until it broadened no further). The soln was washed with Na₂CO₃ aq (100 ml) and the organic phase was dried (Na_2SO_4) and then evaporated to dryness. Dry CH2Cl2 (50 ml) was added, followed by dry HBr gas which was passed through the brown soln until it became red (5 sec). Quantities of dry benzene $(2 \times 50 \text{ ml})$ were added and then evaporated in order to azeotrope unwanted H₂O and HBr. The resulting solid was recrystallised from CH₂Cl₂ether to give the tripyrrene hydrobromide (480 mg; 82%) as bright red microprisms, m.p. 175-182° (decomp.). (Found: C, 58.35; H, 6.51; N, 5.78. C34H48BrN3O8 requires: C, 58.49; H, 6.73; N, 5.85%), λ_{max} 492 nm (ϵ 85,000), τ -3.31, -3.22 (2×NH⁺); -0.28 (NH); 2.89 (methine-H); 5.63 (CH₂); 6.34 ($2 \times OMe$); 6.35 (OMe); $6.8-7.9(m)(3 \times CH_2CH_2CO); 7.28, 7.67, 7.72, 7.93 (4 \times Me); 8.42$ (Bu').

The following tripyrrenes were prepared in a similar way:

t - Butyl 4,6 - di(2 - chloroethyl) - 1 - (2 - methoxycarbonyl) -1',2,3,5 - tetramethyltripyrrene - a - 6' - carboxylate hydrobromide (13), from benzyl 5' - t - butoxycarbonyl - 3,4' - di(2-chloroethyl) -3',4 - dimethylpyrromethane - 5 - carboxylate (10)¹⁹ (600 mg) by debenzylation and then condensation with compound 5 (215 mg). After recrystallisation from ether, 378 mg (50%) of bright red microcrystals of the tripyrrene hydrobromide, m.p. > 160° (dec.) were obtained. (Found: C, 54.54, 54.37; H, 6.18, 6.11; N, 6.30. C₃₁H₄₂BrCl₂N₃O₄· $\frac{1}{2}$ H₂O requires: C, 54.67; H, 6.32; N, 6.17%), λ_{max} 486 nm (ϵ 92,000); τ , -3.40, -3.28 (2 × NH⁺), -0.32 (NH); 2.91 (methine-H); 5.69 (CH₂); 6.35 (OMe); 7.31, 7.69, 7.73, 7.90 (4 × Me); 6.41(t), 6.68(t), 6.90(t), 7.14(t), 7.31(t), 7.52(t) (2 × CH₂CH₂Cl and CH₂CH₂CO); 8.43(Bu').

t - Butyl 4,6 - diethyl - 1 - (2 - methoxycarbonylethyl) - 1',2,3,5 - tetramethyltripyrrene - a - 6' - carboxylate hydrobromide (14), by hydrogenolysis of compound 11^{31} (425 mg) and condensation with compound 5 (168 mg). The tripyrrene hydrobromide was obtained as red microcrystals (347 mg; 63%) from CH₂Cl₂-ether, m.p. >165° (dec.), (Found: C, 61.65; H, 7.28; N, 6.79 C₃₁H₄₄BrN₃O₄ requires: C, 61.78; H, 7.36; N, 6.97%), λ_{max} 490 nm (e 91,000); τ . -3.28, -3.18 (2 × NH⁻¹), -0.99 (NH); 2.89 (methine-H); 5.67 (CH₂); 6.31 (OMe); 7.10-7.66 (m)(2 × CH₂CH₃ and CH₂CH₂CO); 7.28, 7.66, 7.72, 7.92 (4 × Me); 8.40 (Bu'); 8.88(t), 8.96(t) (2 × CH₂CH₃).

t - Butyl 1,4,6 - triethyl - 1',2,3,5 - tetramethyltripyrrene - a - 6' - carboxylate hydrobromide (15), by hydrogenolysis of compound 11³¹ (460 mg) and condensation with compound 16 (134 mg). The tripyrrene hydrobromide was obtained as bright red microcrystals (268 mg; 50%) from CH₂Cl₂-ether, m.p. > 165° (decomp.), (Found: C, 63.66; H, 8.05; N, 7.59. C₂₉H₄₂BrN₃O₂ requires: C, 63.96; H, 7.77; N, 7.72%), λ_{max} 490 nm (ϵ 88,000); τ , -3.18 (2 NH⁺); -0.19 (NH); 2.90 (methine-H); 5.67 (CH₂); 7.26(q) (CH₂CH₃); 7.29 (Me); 7.52(m) (2 × CH₂CH₃); 7.68, 7.72; 7.92 (3 × Me); 8.40 (Bu⁺); 8.74-9.06 (m) (3 × CH₂CH₃).

t - Butyl 3 - ethyl - 1,6 - di(2 - methoxycarbonylethyl) - 1',2,4,5 - tetramethyltripyrrene - a - 6' - carboxylate toluene-p-sulphonate (6), from compound 4b (788 mg) and compound 5 (381 mg). In this case the Na₂CO₃ wash did not afford the tripyrrene free base and the tripyrrene toluene-p-sulphonate (1.09 g; 80%) was obtained from CH₂Cl₂-ether, m.p. > 135° (decomp.), (Found: C, 63.60; H, 7.05; N, 5.56. C₄₀H₃3N₃O₉S requires: C, 63.89; H, 7.10; N, 5.59%), λ_{max} 489 nm (ϵ 97,000); τ , -3.02. -2.82 (2 NH⁺); -0.36 (1 NH); 2.13 (d) (o-Ph); 2.87 (d)(m-Ph); 2.97 (methine-H); 5.80 (CH₂); 6.38 (2 × OMe); 7.01 (1), 7.16-7.62 (m, 8 H) (2 × CH₂CH₂CO₂Me and CH₂CH₃); 7.56, 7.66, 7.72, 7.98, 8.01 (5 × Me); 8.50 (Bu'); 8.83 (t) (CH₂CH₃).

1',8'-Dimethyl-a,c-biladienes

3 - Ethyl - 1,6,7 - tri(2 - methoxycarbonylethyl) - 8 methoxycarbonylmethyl - 1',2,4,5,8' - pentamethyl - a,c - biladiene dihydrobromide (8). Compound 6 (500 mg) was stirred in TFA (4 ml) for 5 min before addition of compound 7 (217 mg) in MeOH (7 ml) and then 45% HBr/HOAc (2 ml). After stirring for 30 min, ether (100 ml) was added dropwise with continued stirring. The a,c-biladiene dihydrobromide was filtered off and washed well with ether to give 525 mg (89%) of red-brown crystals, m.p. >150° (decomp.). (Found: C, 55.43; H, 6.13; N, 6.28. C₄₁H₅₄Br₂N₄O₈ requires: C, 55.28; H, 6.11; N, 6.29%), λ_{max} 453 (ϵ 26,500) and 519 nm (243,000); τ , -3.60, -3.40 (2 H), -3.21 (4× NH br); 2.43, 2.89 (2× methine-H); 4.77 (CH₂ bridge); 6.29, 6.33, 6.36, 6.40, 7.27 (6 H), 7.66, 8.09, and 8.11 (9× Me); 6.50 (CH₂CO₂Me); 6.80-7.56 (m) (3× CH₂CH₂CO₂Me and CH₂CH₃); 8.83 (t) (CH₂CH₃).

1,3,5,8 - Tetra (2 - methoxycarbonylethyl) - 1',2,4,6,7,8' - hexamethyl - a,c - biladiene dihydrobromide (19) was similarly prepared from compounds 12 and 5; when filtered from the ether solution it became gummy upon exposure to air. The material was therefore not fully characterised, and the bright red crystals of *a,c*-biladiene were stored under ether prior to cyclisation to porphyrin.

3,5 - Di(2 - chloroethyl) - 1,8 - di(2 - methoxycarbonylethyl) - 1',2,4,6,7,8' - hexamethyl - a,c - biladiene dihydrobromide (20) was similarly prepared from compounds 13 (145 mg) and 5 (48 mg in MeOH (2.5 ml)) using TFA (1.4 ml) and 45% HBr/HOAc (0.7 ml). Yield 164 mg (90%) of red-brown crystals, m.p. >150° (decomp.). (Found: C, 52.55; H, 5.66; N, 6.64. C₃, $H_{43}Br_2Cl_2N_4O_4$ requires: C, 52.68; H, 5.74; N, 6.64%), λ_{max} 454 (ϵ 26.700) and 566 nm (224,000); τ , -3.54, -3.48, -3.34 (2H) (4 × NH br); 2.85 (2 × methine-H); 4.78 (CH₂ bridge); 6.34 (2 × OMe); 6.76-7.05 (6 H, m), 7.10-7.34 (4 H, m), 7.51 (4 H, t) (2 × CH₃CH₂Cl and 2 × CH₂CH₂CO); 7.28 (6H), 7.56 (6H), 7.60, 8.01 (6 × Me).

4,6 - Diethyl - 8 - methoxycarbonyl - 1 - (2 - methoxycar-

bonylethyl) - 1',2,3,5,7,8' - hexamethyl - a,c - biladiene dihydrobromide (21) was prepared from compounds 14 (250 mg) and 18 (75.5 mg in McOH (5 ml)) using TFA (2.0 ml) and 45% HBr/HOAc (1 ml). Yield, 244 mg (79%) of red-brown crystals, m.p. >150° (decomp.). (Found: C, 53.84, 53.99; H, 6.28, 6.12; N, 7.24. C₃₅H₄₆Br₂N₄O₄·2H₂O requires: C, 53.71; H, 6.44; N, 7.16%), λ_{max} 450 (ϵ 25,300) and 517 nm (206,000); τ , -3.98, -3.39 (2H), -3.22 (4 × NH br); 2.75, 2.86 (2 × methine-H); 4.24 (CH₂ bridge); 6.14, 6.35 (2 × OMe); 7.08 (7-Me); 7.16-7.62 (m) (2 × CH₂CH₃ and CH₂CH₃CO); 7.30, 7.39, 7.66, 7.74, 8.06 (5 × Me); 8.85 (t), 9.32 (t) (2 × CH₂CH₃).

1,4,6 - Triethyl - 8 - methoxycarbonyl - 1',2,3,5,7,8' - hexamethyl - a,c - biladiene dihydrobromide (22) was similarly prepared from compounds 15 (95 mg) and 18 (32 mg in MeOH (2.5 ml)) using TFA (0.8 ml) and 45% HBr/HOAc (0.38 ml). Yield, 108 mg (90%) of red-brown crystals, m.p. > 150° (decomp.). (Found: C, 57.75; H, 6.55; N, 8.28. C₃₃H₄₄Br₂N₄O₄ requires: C, 57.56; H, 6.44; N, 8.14%), λ_{max} 450 (ϵ 28,400) and 517 nm (207,000); τ , -4.00, -3.39, -3.26, -3.18 (4×NH); 2.75, 2.88 (2×methine-H); 4.75 (CH₂ bridge); 6.14 (OMe); 7.08 (7-Me); 7.16-7.72 (m) (3×CH₂CH₃); 7.32, 7.39, 7.69, 7.75, 8.05 (5×Me); 8.86 (t), 8.91 (t), 9.33 (t) (3×CH₂CH₃).

1,4,6,8 - Tetra (2 - methoxycarbonylethyl) - 7 - methoxycarbonylmethyl - 1',2,3,5,8' - pentamethyl - a,c - biladiene dihydrobromide (23) was likewise prepared from compounds 12 (125 mg) and 17 (50 mg in McOH (1 ml)) using TFA (1 ml) and 45% HBr/HOAc (0.5 ml). Yield, 150 mg (91%). Two recrystallisations from CH₂Cl₂—ether gave red prisms, m.p. >150° (decomp.). (Found: C, 53.23, 53.44; H, 5.92, 5.99; N, 5.90, 5.77. C₄₃H₃₆Br₂N₄O₁₀·H₂O requires: C, 53.42; H, 6.05; N, 5.79%). A_{max} 453 (ϵ 36,300) and 526 nm (162,000); τ , -3.8 to -3.1 (4 × NH br); 2.53, 2.86 (2 × methine-H); 4.79 (CH₂ bridge); 6.17 (CH₂CO); 6.29, 6.34 (6 H), 6.42, 6.60 (5 × OMe); 6.8–8.1 (m) (4 × CH₂CH₂CO); 7.27 (6 H), 7.65, 7.73, 8.03 (5 × Me).

Porphyrins

2 - Ethyl - 4,6,7 - tri(2 - methoxycarbonylethyl) - 5 methoxycarbonylmethyl - 1.3,8 - trimethylporphin, "Isocoproporphyrin tetramethyl ester", (1b). Compound 8 (263 mg) was added to a solution of copper(II) chloride (1.3 g) in DMF (20 ml) kept at 145°. The mixture was stirred during 4 min and then poured into H₂O, extracted with CH₂Cl₂, and the organic phase was washed three times with H₂O before being dried (Na₂SO₄). After evaporation, the residue (copper(II) complex of required porphyrin) was treated with H₂SO₄ (0.5 ml) in TFA (9.5 ml) with vigorous stirring during 20 min before being poured into H₂O and extracted with CHCl₃. The organic phase was washed with NaHCO₃ aq and then H₂O, dried (Na₂SO₄) and then evaporated to dryness. The residue was set aside overnight in 5% w/v H2SO4 in MeOH before being poured into NaOAc aq and extracted with CH2Cl2. The organic phase was washed with NaHCO₃ aq, dried (Na₂SO₄), and evaporated to dryness. The residue was chromatographed (elution with CH₂Cl₂) and evaporation of the red eluates gave a residue which was crystallised from CH2Cl2-n-hexane to give isocoproporphyrin tetramethyl ester (68 mg; 30%), m.p. 182-183° (sealed capillary).† When recrystallised from CH2Cl2-MeOH, the material had m.p. 193-195° (heated hot-stage). The compound (ex. CH₂Cl₂-n-hexane) was identical by TLC and m.m.p. with a sample of natural material (m.p. 180-182°) supplied by Dr. G. H. Elder. It was also identical by TLC with a sample subsequently synthesised by Prof. P. S. Clezy, and the m.p. and m.m.p. of the sample from CH2Cl2-MeOH confirmed its identity. (Found: (ex. CH₂Cl₂-n-hexane) C, 67.84; H, 6.72; N, 7.78. C₄₀H₄₆N₄O₈ requires: C, 67.59; H, 6.52; N, 7.88%. Found: (ex. CH₂Cl₂-MeOH) C, 66.67, 66.61; H, 6.52, 6.45; N, 7.82. C40H46N4O8 H2O requires: C, 66.73; H, 6.74; N, 7.78%), λ_{max} 398 (ε 198,000), 493 (14,300), 526 (9,600), 559 (6800), and 609 nm (4500); A max in CHCl3 containing 5% TFA, 403 (ϵ 400,000), 543 (16,200), and 582 nm (7600), τ [‡], -0.99 (2H), 0.01 (2H) (4 × meso-H); 4.60 (CH₂CO₂Me); 5.44-5.86 (m) $(3 \times CH_2CH_2CO_2Me)$; 6.04 (q)(CH_2CH_3); 6.26, 6.34, 6.36, 6.40 (4 × OMe); 6.42, 6.46, 6.50 (3 × Me); 6.54–6.90 (m) (3 × CH_2CH_2CO_2Me); 8.18 (t) (CH_2CH_3).

2,4,6,8 - Tetra (2 - methoxycarbonylethyl) - 1,3,5,8 - tetramethylporphin, "Coproporphyrin-III tetramethyl ester", (24). This compound was similarly prepared from compound 19 (about 125 mg) using copper(II) chloride (700 mg) in DMF (10 ml) at 165° during 4 min. After demetallation, the product was obtained as red microneedles (30 mg; 24% from compound 12) from CH₂Cl₂-MeOH and had m.p. 150–154, remelting 178–182° (Lit.³² 150–155, 179–182°). The material was identical with an authentic sample. (Found: C, 67.30; H, 6.49; N, 8.11. Calc. for C₄₆H₄₆N₄O₄: C, 67.59; H, 6.52; N, 7.88%), λ_{max} 400 (¢ 158,600), 497 (13,700), 531 (9100), 567 (5950), 592 (1300), and 620 nm (4300); τ , 0.03, 0.05, 0.10 (2H) (4 meso-H); 5.5–5.8 (m) (4 × CH₂CH₂CO₂Me); 6.42, 6.46, 6.47, 6.50 (4 × Me).

2,4 - Di(2 - chloroethyl) - 6,7 - di(2 - methoxycarbonylethyl) -1,3,5,8 - tetramethylporphin (25) was similarly prepared from compound 20 (67 mg) using copper(II) chloride (850 mg) in DMF (15 ml) at 145° for 4 min. After demetallation using 5% H₂SO₄ in TFA (10 ml) for 20 min the product was obtained from CH₂Cl₂-MeOH as deep red crystals (24 mg; 46%), m.p. 216-218° (Lit.³³ 216-217°). The material was identical with an authentic sample³³ and was transformed into protoporphyrin-IX dimethyl ester (26) in 65% yield as previously described.³³

2,4 - Diethyl - 6 - methoxycarbonyl - 7 - (2 - methoxycarbonylethyl) - 1,3,5,8 - tetramethylporphin, "Rhodoporphyrin-XV dimethyl ester", (27) was likewise prepared from compound 21 (59 mg) using copper(II) chloride (560 mg) in DMF (10 ml) at 145° during 4 min. The product was demetallated in H₂SO₄ (1 ml) and TFA (9 ml). Crystallisation from CH₂Cl₂-MeOH gave 13 mg (29%) of red-brown needles, m.p. 264-266° (Lit.¹⁴ 268°), τ , -0.90, 0.04, 0.21, 0.25 (4 × meso-H); 5.57, 6.32 (2 × OMe); 6.14, 6.46, 6.49, 6.56 (4 × Me), 5.68 (1), 6.72 (1) (CH₂CH₂CO); 5.86-6.30 (m), 8.19 (1) (2 × CH₂CH₃); 14.14 (2 × NH br).

2,4,7 - Triethyl - 6 - methoxycarbonyl - 1,3,5,8 - tetramethylporphin (28) was similarly prepared from compound 22 (108 mg) in DMF (10 ml) containing copper(II) chloride (530 mg) at 145° for 4 min. After demetallation, etc. the product was obtained as red-brown needles (30 mg; 38%) from CH₂Cl₂-MeOH, with m.p. >300°. (Found: C, 75.36; H, 7.09; N, 11.16. C₃₂H₃₆N₄O₂ requires: C, 75.56; H, 7.13; N, 11.02%), λ_{max} 403 (ϵ 224,000), 503 (11,200), 541 (16,800), 564 (9800), 620 nm (2400); in CHCl₃ + 5% TFA, λ_{max} 406 (ϵ 400,000), 548 (14,500), and 594 nm (11,500), τ , -1.10, -0.18, 0.10 (2H) (4 × meso-H); 5.64 (OMe); 5.75–6.25 (m), 8.00–8.35 (m) (3 × CH₂CH₃); 6.10, 6.42 (6H), 6.53 (4 × Me).

2,4,6,7 - Tetra (2 - methoxycarbonylethyl) - 5 - methoxycarbonylmethyl - 1,3,8 - trimethylporphin (29) was similarly prepared from compound 23 (80 mg) in DMF (12 ml) containing copper(II) chloride (450 mg) at 165° during 4 min. After demetallation, etc. the product was recrystallised from CH₂Cl₂-MeOH to give red microneedles (25 mg; 38%), m.p. 214-215.5°. The porphyrin was satisfactorily identified by TLC, m.p. and m.m.p. with a sample of authentic material supplied by Prof. Jackson. (Found: C, 65.31; H, 6.34; N, 7.43. C₄₂H₄₈N₄O₁₀ requires: C, 65.61; H, 6.29; N, 7.29%), λ_{max} 400 (ϵ 189,800), 500 (13,800), 534 (9600), 568 (6700), 595 (1200) and 622 nm (3700); τ , -0.10 (2H), 0.02 (2H) (4 × meso-H); 4.96 (CH₂CO₂Me); 5.4-5.9 (m), 6.56-6.92 (m) (4 × CH₂CH₂CO); 6.24, 6.32, 6.34 (6H), 6.38 (5 × OMe); 6.40, 6.41, 6.47 (3 × Me).

Acknowledgements—We thank Dr. G. H. Elder for providing a sample of natural isocoproporphyrin tetramethyl ester and Prof. A. H. Jackson for supplying an authentic sample of porphyrin 29 and for carrying out comparison with our own sample. We are also grateful to Prof. P. S. Clezy for exchanging samples of isocoproporphyrin tetramethyl ester. A studentship (to J.R.) from the S.R.C. is gratefully acknowledged.

REFERENCES

- ¹Part XXXIV, G. F. Griffiths, G. W. Kenner, S. W. McCombie and K. M. Smith, *Tetrahedron* 32, 275 (1976).
- ²Preliminary publication, J. A. P. Baptista de Almeida, G. W.

[†]See text for a fuller discussion of the m.p. behaviour of 1b. [‡]Concentration 0.04 M in CDCl₃. The spectrum showed concentration dependence.

Kenner, K. M. Smith and M. J. Sutton, J. Chem. Soc. Chem. Comm. 111 (1975).

- ³H. Fischer and H. Orth, Die Chemie des Pyrrols Vol. IIi, p. 370, Akademische Verlag, Leipzig (1937); H. Fischer and K. Zeile, Liebigs Ann. 468, 98 (1929).
- *Porphyrins and Metalloporphyrins (Edited by K. M. Smith), pp. 33-37. Elsevier, Amsterdam (1975).
- ⁵A. R. Battersby and E. McDonald in Ref. 4, pp. 64-122.
- ⁶A. H. Jackson, Phil. Trans. Roy. Soc. Ser B, 273, 119 (1976).
- ⁷E.g. G. W. Kenner and K. M. Smith, *Ann. N.Y. Acad. Sci.* 206, 138 (1973); A. Mayer, S. Ogawa, R. G. Shulman, T. Yamane, J. A. S. Cavaleiro, A. M. d'A. Rocha Gonsalves, G. W. Kenner and K. M. Smith, *J. Mol. Biol.* 86, 749 (1974).
- ⁸For a review, see A. H. Jackson and K. M. Smith, *Total Synthesis of Natural Products* (Edited by J. W. ApSimon), Vol. 1, pp. 184–197. Wiley, New York (1973).
- ⁹A. H. Jackson, G. W. Kenner, G. McGillivray and K. M. Smith, J. Chem. Soc. C, 294 (1968).
- ¹⁰A. W. Johnson and I. T. Kay, Ibid. 2418 (1961).
- ¹¹P. S. Clezy and A. J. Liepa, Aust. J. Chem. 24, 1027 (1971).
- ¹²J. M. Conlon, J. A. Elix, G. I. Feutrill, A. W. Johnson, M. W. Roomi and J Whelan, J. Chem. Soc. Perkin Trans. 1, 713 (1974).
- ¹³T. A. S. Cavaleiro, A. M. d'A. Rocha Gonsalves, G. W. Kenner and K. M. Smith, *Ibid*. Perkin Trans. 1, 2471 (1973).
- ¹⁴J. Engel and A. Gossauer, Ibid., Chem. Commun. 570 (1975).
- ^{15a}G. H. Elder, Biochem. J. 126, 877 (1972); ^bM. S. Stoll, G. H. Elder, D. E. Games, P. O'Hanlon, D. S. Millington and A. H. Jackson, Ibid. 131, 429 (1973).
- ¹⁶P. S. Clezy and V. Diakiw, Aust. J. Chem. 26, 2697 (1973).
- ¹⁷G. F. Griffiths, G. W. Kenner, K. M. Smith and M. J. Sutton, unpublished results.

- ¹⁸Cf. A. H. Jackson, G. W. Kenner and K. M. Smith, J. Chem. Soc. C, 502 (1971).
- ¹⁹J. A. S. Cavaleiro, A. M. d'A. Rocha Gonsalves, G. W. Kenner and K. M. Smith, *Ibid.* Perkin Trans. 1, 1771 (1974); and refs therein.
- ²⁰G. W. Kenner, J. Rimmer, K. M. Smith and J. F. Unsworth, unpublished results.
- ²¹J. A. P. Baptista de Almeida, G. W. Kenner, G. N. LaMar and K. M. Smith, unpublished results.
- ²²G. W. Kenner, J. Rimmer, K. M. Smith and J. F. Unsworth, Phil. Trans. Roy. Soc. Ser. B, 273, 255 (1976).
- ²³G. W. Kenner, S. W. McCombie and K. M. Smith, J. Chem. Soc. Perkin Trans. 1, 2517 (1973).
- ²⁴H. Musso and K. Figge, Liebigs Ann 668, 1 (1963).
- ²⁵B. R. Baker, R. E. Schaub, M. V. Querry and J. H. Williams, J Org. Chem. 17, 77 (1952).
- ²⁶J. Ellis, Ph.D. Thesis, Liverpool (1960).
- ²⁷S. F. MacDonald, J. Chem. Soc. 4184 (1952).
- ²⁸A. R. Battersby, D. A. Evans, K. H. Gibson, E. McDonald and L. Nixon, *Ibid.* Perkin Trans. I, 1546 (1973).
- ²⁹J. F. Unsworth, Ph.D. Thesis, Liverpool (1975); see also Ref. 28.
- ³⁰R. J. Abraham, G. H. Barnett, E. S. Bretschneider and K. M. Smith, *Tetrahedron* 29, 553 (1973).
- ³⁴T. T. Howarth, A. H. Jackson and G. W. Kenner, J. Chem. Soc. Perkin Trans. I, 502 (1974).
- ³²A. H. Jackson, G. W. Kenner and J. Wass, *Ibid.* Perkin Trans. 1, 1475 (1972).
- ³³R. P. Carr, A. H. Jackson, G. W. Kenner and G. S. Sach, *Ibid.* C, 487 (1971).
- ³⁴H. Fischer and H. Orth, *Die Chemie des Pyrrols* Vol. IIi, p. 534. Akademische Verlag., Leipzig (1937).